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The projectors of the decomposition
theorem are motivated

MARK ANDREA DE CATALDO AND LUCA MIGLIORINI

We prove that the projectors arising from the decomposition the-
orem applied to a projective map of quasi-projective varieties are
absolute Hodge, André motivated, Tate and Ogus classes. As a
by-product, we introduce, in characteristic zero, the notions of
algebraic de Rham intersection cohomology groups of a quasi-
projective variety and of intersection cohomology motive of a pro-
jective variety.

1. Introduction and preliminary material

P. Deligne introduced the notion of absolute Hodge classes on a smooth
proper variety over a field K of characteristic zero in [15], where he proved
that Hodge classes on complex Abelian varieties are absolute Hodge. This is
a powerful statement: on a complex Abelian variety, the notion of a Hodge
class is purely algebraic. On a nonsingular proper complex variety as above,
algebraic cycle classes are absolute Hodge, and absolute Hodge classes are
Hodge classes. A positive answer to the Hodge conjecture would imply that
these implications can be reversed. By considering absolute Hodge corre-
spondences, one defines the category of absolute Hodge motives; see §6 of
[17]. There is also a notion of absolute Hodge map. One can work with possi-
bly singular varieties, where the notions of absolute Hodge cycles and maps
are meaningful.

For a nonsingular projective K-variety, there is the stronger notion of
“motivated cycle”, due to Y. André [1]. The corresponding category of
motives turns out to be Abelian, semi-simple and Tannakian. In terms
of cycles, we have the implications: algebraic = motivated = absolute
Hodge. A positive solution to the standard conjectures would reverse the
first implication. A positive solution to the Hodge conjecture would reverse
both.
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Let K be an algebraically closed field of characteristic zero, let f : X —
Y be a projective map of quasi-projective K-varieties and let I be an f-
ample line bundle on X. In this paper, first we show how the decomposition
and relative hard Lefschetz theorems [3, 12] give rise to self-maps of the
intersection cohomology groups of X, the projectors of the decomposition
theorem, and then we prove Theorem 2.5.1: these projectors are absolute
Hodge maps. If X is nonsingular projective, a stronger result, i.e. Theo-
rem 2.6.2, holds: the projectors originating from the decomposition theorem
are motivated cycles in X x X, and the decomposition theorem holds at the
level of André, hence absolute Hodge, motives. In particular, it follows that
it is possible to define, for a singular projective variety, an André motive
whose realization is intersection cohomology.

83 is devoted to prove some variants of Theorem 2.5.1: the projectors are
absolute Hodge over any field of characteristic zero, they are Tate classes
and, finally, they are absolutely Hodge and Tate in the sense of A. Ogus.

There is no loss of generality in assuming that tr.deg.qK < oo; in par-
ticular, the field K can be embedded into the field C of complex numbers.
The notion of absolute Hodge involves the interplay of three cohomology
theories: de Rham, étale Qs-adic and, after base change via an embedding
of the field into C, Betti.

We take as starting point the decomposition and relative Hard Lefschetz
theorems in the Betti theory and, from that point on, we work exclusively in
cohomology, i.e. we make no further use of derived categories. There are three
reasons for this. The first is that we are not aware of the existence in the
literature of the cup-product operation at the level of the derived category of
D-modules (de Rham side). The second is that in the contexts of motivated
cycles and of crystalline cohomology, such derived techniques do not seem to
be available at the present time. The third is that we found working within
the context of cohomology and of its fundamental functoriality properties
aesthetically pleasing.

The key point in all the results of this paper, is to construct the pro-
jectors of the decomposition theorem in a uniform way in all cohomology
theories, so that they turn out to be, more or less automatically, compati-
ble with each other via the comparison isomorphisms. We employ four main
K-rational constructions from §1.3: a geometric construction of the perverse
filtration; stratifications of maps; linear algebra description of the decompo-
sition by supports; splittings in abelian categories. First, we work with X
nonsingular, then we refine our analysis to the singular case. Along the way,
we offer in §2.3 a definition of intersection de Rham cohomology as a certain
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subquotient of the de Rham cohomology of a resolution, and we point out
several of its properties.

We thank F. Charles and to B. Bhatt for useful conversations. We thank
the anonymous referee for the thoughtful suggestions.

1.1. Notation, conventions and some preliminary facts

The set-up. Unless otherwise stated, we work over an algebraically closed
field K of finite transcendence degree over Q. A K-scheme is a separated
scheme of finite type over K; a K-variety is an integral K-scheme. The
restriction on the transcendence degree of K is for convenience of exposition
only; see §3.1. The embeddings of K into C are denoted by o. If X is a K-
scheme, we denote by ¢X the pull-back to C via o; similarly, for K-maps,
etc.

We employ the following cohomology theories (see [15]): Hyr(—/K)
(de Rham), He (—, Q) (Qp-adic); if K = C, then we have Hg(—,—) (the
usual Betti cohomology theory with Q,C, Q-coefficients. The compactly
supported counterparts are denoted H) 4r(—/K), etc. We fix the following
data:

(1) himfog:W—=x 1oy, pi=c(B),

where f,g are projective maps of quasi-projective K-schemes, F is an f-
ample line bundle on X and 7 := ¢1(E) € H?(X)(1), in any of the cohomol-
ogy theories that we shall employ. Our interest actually lies in the datum of
(f,n). The map ¢ is usually going to be a resolution of the singularities of
X, and it is introduced as means to reduce proofs of statements about (f,n)
to the case when X is nonsingular.

Conventions on cohomological and filtration degrees. Since the
bookkeeping of cohomological and filtration degrees is inessential and a dis-
traction, we omit it for the most part. Here is the list of the conventions that,
unless mentioned otherwise, we employ implicitly: the cohomology groups
H*(X) live in the range [0, 2 dim X], the Hodge filtrations .# (Betti and de
Rham) in the range [0, dim X|, and the weight filtrations % (all three the-
ories) in the interval [0,2 dim X|; if X is integral and nonsingular, then the
Betti intersection complex is ICx = Qx[dim X]; if X is irreducible, then the
cohomology sheaves H*(ICx) live in the range [— dim X, —1] and the inter-
section cohomology groups IH*(X) := HF~4m X (1O ) live in the same range
as cohomology, i.e. [0,2dim X]; for general X, we write X = UX; (union of
irreducible components), form the finite map v : [[, X; = X and set ICx :=
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v (®:1Cx,); we place the groups IH*(X;) in the range [0,2dim X;] ([7],
§4.6); the perverse filtration & on IH(X) lives in the range [—r(f),r(f)],
where r(f) is a convenient integer, called the defect of semismallness of f in
[10, 12]. We employ the same conventions for Hi(X) and IH\(X).

Decomposition, relative hard Lefschetz and semisimplicity the-
orems. We refer to the survey [12] for the language and facts surrounding
these theorems, which we use freely in what follows, especially in §1.4.

Supports. A semisimple perverse sheaf P (étale or Betti) on a K-scheme
V' splits canonically P = ©yes(p) Py as the finite direct sum, over a finite
set S(P) of distinct integral subvarieties U C V, of the intersection com-
plexes Py of the varieties U with suitable twisted semisimple coefficients.
We call S(P) the set of supports of P. Let ¢ : U — V be a projective map of
quasi-projective K-schemes, and let () be a semisimple complex of geometric
origin ([3], 6.2.4), e.g. @ = ICy. By the decomposition theorem, we have a
non-canonical finite direct sum decomposition: ¢.Q = @, Q4 .[—al, where
Qpa :=PR0.Q (perverse direct image sheaf). Each Qg4, is a semisimple
perverse sheaf and we obtain S(¢,Q,a) := S(Qy,q), the set of supports of
¢+Q in perversity a. The cohomology groups H(U,Q) = H(V, ¢.Q) are fil-
tered by the perverse filtration &, and, given that @ will be fixed by the
context, we set G, = Grf)¢’H(U, Q) and we denote the resulting decom-
position by supports by Gry o = Byes($,Q,a)GTé,0.0-

Comparison Betti-de Rham and Betti-étale. The algebraic de
Rham cohomology groups Hyr(X/K) for quasi-projective nonsingular vari-
eties were defined in [19] and they where proved to be isomorphic to the
complex Betti cohomology groups when K = C. The extension to singular
varieties and the definition of Borel-Moore de Rham homology were intro-
duced and studied by Hartshorne in [20]. Applying the simplicial methods of
[14] and the comparison theorem with Betti cohomology endows Hyr(X/K)
with the two natural filtrations .%# (Hodge) and # (weight). The usual maps
between algebraic de Rham cohomology groups, e.g. pull-backs via algebraic
maps, are filtered strict for these filtrations. Recall that a filtered map is
strict if taking graded objects is exact. For any embedding o of K into C,
there are the natural comparison isomorphisms Hp(cX,C) = Hyr(cX/C)
which are bi-filtered strict for .% and 7. Similarly, we have the natural com-
parison isomorphisms Hp(0X, Q) = He (0 X, Q) which is filtered strict for
the weight filtrations on both sides. All of the above applies to H,.
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1.2. Motivated endomorphism in cohomology

In this section we define the notion of motivated endomorphism, which plays
a crucial role in this paper. Our main results assert that the projectors arising
from the decomposition theorem are motivated. When X is nonsingular pro-
jective the strong notion of André motivated cycle, recalled in Section 1.2.1
is available, while, if X is only quasi-projective, we need to consider the
a-priori weaker notion of absolute Hodge cycle, whose definition we recall in
Section 1.2.2.

1.2.1. André motivated endomorphisms. We recall the definition of
Y. André’s motivated cycles AP (X) and the corresponding category of
motives My see [1], §4. Let K be an algebraically closed field of char-
acteristic zero and let X be a nonsingular projective K-variety of dimen-
sion n. Given an ample line bundle defined over K, with first Chern class
n € H2x(X/K), we denote by L the Lefschetz operator on de Rham cohomol-
ogy defined by cupping with n. We recall the definition of the Lefschetz invo-
lution operator #7: if v is a degree j cohomology class, then x;,a = L™ 7 o see
[1], p.10. Roughly speaking, a motivated cycle is a cohomology class on the
projective nonsingular variety X which can be obtained applying standard
operations on algebraic cycle classes and the Lefschetz involution operator.
More precisely, a degree d cohomology class & € Hg%(X /K)(d) is motivated
if there exists a nonsingular projective K-variety Y, algebraic cycles A, B in
X X Y, with cohomology classes o, f € Hyr(X x Y/K) such that

(2) §=pr(@Uxf),

where p1, p2 are the projection on the two factors and * denotes the Lefschetz
involution with respect to a “product” polarization pin ® pin2 on X x Y.
We denote by AP, (X) the vector sub-space of motivated classes on X and
by el A%y (X) — H3%(X/K)(e) the natural injection. The category of
André motives Mg —defined the same way as Grothendieck’s, but using
motivated correspondences in lieu of algebraic ones— is Tannakian, graded,
abelian semi-simple and polarizable ([1], Thm. 0.4). Let h(X) € M denote
the object (André motive) associated with a smooth projective K-variety
X. Since the Kiinneth components of the diagonal are motivated classes, we
have h(X) = ©4h?(X). The de Rham realization functors realizes h?(X) as
HYp(X/K), together with its Hodge filtrations. We have End, (h(X)) =
A X (X x X) Cy,, HIF™X(X x X/K)(dim X). Note that the last term

lives in End®(Hyr(X/K)). In §2.6, where we prove that the projectors asso-
ciated with the decomposition theorem for a projective map are motivated,
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we do not use the Definition (2) of motivated cycles directly, but rather only
the formal properties of the category Mg stated above.

Definition 1.2.1. An endomorphism in End°(Hyr(X/K)) is André moti-
vated if it lies in the image of AYMX(X x X).

mot

Via cly, a motivated codimension p cycle gives rise to a cycle in
ng(X /K)(p). If K is embeddable in C, then such a cycle gives rise to
an absolute Hodge class ([1], Proposition 2.5.1). Conversely, absolute Hodge
cycles are expected to give rise to motivated classes.

1.2.2. Absolute Hodge endomorphism. Absolute Hodge classes are

collections of cohomology classes in the different cohomology theories avail-

able (Betti, de Rham and étale Q-adic in our case), which enjoy strong

compatibility properties with respect to comparison isomorphisms, change

of coefficients and the base change maps corresponding to the different C-

imbeddings of K. We may summarize these compatibilities in a diagram:
Let (K, X,0) be as in (1). We have

(3) Hp(0X,C) o> Har(0 X/C) < Han(X/K)
—®1 ’
UCTy
() Hp(0X,Q)
_®1
UCTy

Hp(0X, Q) 7, Het(0X, Qp) = — Het( X, Q0),

where the arrows UCT come from the universal coefficient theorem; the
arrows c¢ are the comparison isomorphism for Betti-de Rham and Betti-étale
cohomology; the arrows ¢* come from base change via o; the arrows are
strictly compatible for the indicated filtrations.

Define:

(4) H(X) = Hag(X/K) x [ [ Het(X, Qp).
l

We define H(0X) in a similar way. There are natural maps (dg: product of
comparison maps (3); o*: base change via o):

(5) Hp(0X,Q) —2= H(0X) <2 H(X).
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We can replace H(X) with H(X)(m) or with, say, the degree-preserving
endomorphisms End°(H (X)) of H(X). We thus obtain diagram (%), as well
as the analogue of (5), for End’(H (X)), and these are the two ingredients
needed for the following:

Definition 1.2.2. We say that ¢ = (Cir, {Cet,}) € HP(X)(p) is absolute
Hodge if:

1) 0*¢ € Imdq (rationality), for every o;
2) Car € (F0 N #5) Hip(X/K)(p).
Similarly, for ¢ € End®(H(X)).

Remark 1.2.3. Membership of (4p € (F° N #) End’(Hyr(X/K)) means
that (4r preserves the Hodge and weight filtrations on Hyr(X/K). In the
Betti context, membership in (F9N %) End°(Hp(X,Q)) is equivalent to
the map being a morphism of rational mixed Hodge structures.

A K-map f: X — Y of K-varieties defines pull-backs maps from all
the vertices of the diagram (3) for Y to those of the diagram for X, where
all the squares are commutative. From such map of diagrams one can form
kernels, images and cokernels, which still fit in the comparison diagram 3. An
essential step in several proofs in this paper consists in showing that some
linear algebra construction, such as taking a subquotient defined by the
perverse filtration associated to a map, or projecting on a graded summand
of the direct sum decompositions (13) and (14), can be expressed in such a
way that it fits in a diagram like (3). We introduce a special terminology for
this:

Definition 1.2.4. (Compatibility diagram (x)) Let V' be a direct sum
of tensor products of Tate-twisted subquotients of H(X), obtained via some
construction carried out on the various vertices of the diagram 3. We say that
we have the compatibility diagram (x) for V if, for every o, we can replace
H(X) with V at all the vertices in (3) and retain all the properties listed
above of the resulting arrows induced by the construction. Similarly, given a
map u : V — V'’ between two such objects, obtained via some construction
carried out at each vertex, we say that we have the compatibility diagram
(%) for u if we have compatibility diagrams (x) for V and V' and the arrows
u yield a map of the compatibility diagrams (%) that makes all squares
commutative and such all the arrows between corresponding vertices of the
two compatibility diagrams (x) are filtered strict for the indicated filtrations.
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The gist of the above definition is that a given construction u : V — V/|
when seen at the de Rham vertex corresponding to 0 X, is Q-rational as well
as K-rational.

In Proposition 2.1.1 we show that we have compatibility diagrams (x)
for the subspaces of the perverse filtration &y and hence for its graded
pieces Gry = Gr?’s. Similarly, Propositions 2.2.1, 2.4.1 show that we have
compatibility diagrams (x) for the direct sum decompositions (13) and for
the splitting (14).

1.3. Three geometric constructions and a linear algebra splitting

1.3.1. The filtrations induced by a flag. Let (K, f) be as in (1). Our
aim is to define the “flag” filtrations (7) on the cohomology of the domain
of a map of varieties. The definition is geometric in the sense that it is based
on the diagram of maps (6). For a general flag, these flag filtrations coincide
with the perverse Leray filtration, so that the latter admits a geometric
description. It is this latter that plays a central role in this paper.

Form a Cartesian diagram of K-varieties:

Te

(6) X T x> x

Lk

Y/ — =Yy —1.ovy

e

Ag —2> A,
where

1) g is any map subject to the following properties: Y’ is affine, ¢ is
a Zariski locally trivial A fibration for some d > 0; the existence of
¢, which is never unique, is ensured by the quasi-projectivity of Y
(“Jouanolou’s trick” [7]);

2) ¢ is any closed embedding into an affine space A of some dimension NV;

3) ie is the embedding of a complete flag of affine linear sections of A:
A, = {® = A—(N—i—l) c.--C AO = A}a

where A_. is a codimension ¢ linear subspace of A.



The projectors of the decomposition theorem are motivated 1069

The left-most-side of this diagram corresponds to a choice of a point
p € B(K), where B is the variety of complete affine linear flags in A. For
any such 8 € B(K), define increasing filtrations F* on H(X) and on Hy(X)
by setting: (7 shifts cohomological degrees)

. FPH(X) = Ker {H(X) "~ H(X",)} .
F{ H(X) := Tm {H\(X}) ™5 Hi(X)},

Fact 1.3.1. (Perverse=general flag) According to [7], Theorem 3.3.5,
for general g € oB(C), the filtrations of type Fg, F!BB appearing at every
Betti vertex of the compatibility diagram (x) 3) for H(X) and H\(X) coin-
cide, up to a re-numbering of the cohomological degree and of the filtration
index, with the perverse filtrations &p .

1.3.2. Teissier and Whitney stratifications of a map. The goal of
this section is to prove Proposition 1.3.2 by using beautiful results of Verdier
[25] and Teissier [24]. For background on stratifications, we refer to [18], p.43.

Let (K, f) beasin (1). If K = C, then there are the notions of: Whitney
stratification of the complex analytic space underlying a C-scheme; Whitney
stratification of a map of C-schemes, which requires the topological local
triviality of f over each stratum. Verdier has proved in [25], 3.3, 4.14-15,
that one can produce algebraic Whitney stratifications, Jx : X = [[, 7/ and
Jy Y =11, T}, of the map f so that the strata T" are C-subvarieties (locally
closed, integral and nonsingular). This is achieved as follows: Verdier first
proves that there are algebraic Whitney stratifications of Y and X (this is
the hard part); it is then easy to refine algebraically both stratifications so
that the following condition is met: every stratum on X maps smoothly and
surjectively onto a stratum on Y'; at this point, f is a stratified submersion
for the refined algebraic Whitney stratifications; the Thom isotopy lemmata
[18] imply the desired local triviality assertion.

Teissier has introduced a local algebraic condition on a stratification of a
(C-scheme that, strikingly, implies that the stratification is a Whitney one: for
the condition and the proof of the implication, see [24], Proposition I11.2.3.1,
p-398. Teissier’s algebraic condition can be defined over any field, where it
can be achieved by a simple noetherian induction based on the argument of
the proof of [24], VI.2.1, p.477.

Given a stratification %3 : Y = [[ T3, denote by Sz, the set of the clo-
sures T; C Y.
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Proposition 1.3.2. Let (K, f) be as in 1). There is a stratification Ty :
Y =117} such that for every embedding o of K into C and for every b € Z,
the sets of supports (§1.1) Sp(of,b,I1Cpsx) C 0(S). In particular the
supports of every of are K-rational.

Sketch of proof. Start with a stratification of Y subject to Teissier’s condi-
tions. Do the same for X. Refine both stratifications so that the following
condition is met: every stratum on X maps smoothly and surjectively onto
a stratum on Y. Call %3 and Jx the results, which automatically satisfy
Teissier’s conditions. By passing to C, the discussion above shows that the
o7 form a Whitney stratification of o f. The local triviality assertion implies
that the direct image complex o f./Cp ,x is constructible with respect to
09y, so that the supports of o f, ICyx are to be found in ¢S, . 0

Remark 1.3.3. In a similar context, the rationality of the notion of Whit-
ney stratification, as well as its relevance to motivic questions is pointed
out in [2], Lemma 3.1.9, where Teissier’s result is used to prove that the
higher direct images by a K-map of a K-constructible sheaf are still K-
constructible.

1.3.3. Contributions of strata: results from [7, 10]. In this section,
we introduce the K-rational construction (8); this is to be used later in the
proof of Proposition 2.2.1. We specialize to K = C in order to recall, in
the Betti context, the linear algebra characterization (12) of the summands
corresponding to different supports in the decomposition (13). This charac-
terization follows from the Claim on p.745 in [10], and Theorem 4.3.2 and
Lemma 4.5.3 in [7].

Let (K, f) be as in (1). Since we are going to use the construction that
follows for f, as well for auxiliary maps ¢ : U — V, we use ¢ in what follows.
Fix a stratification .23, of V as in Proposition 1.3.2. For every stratum 7' C V,
form the commutative diagram:

T

A
(8) T L (er)eg—=U
]

T

v,

where T—V is the closed embedding; er is the generic point of T
¢~ 1(er),.q — U is the closed embedding; p is a proper, generically finite
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surjection from a nonsingular quasi-projective K-scheme, e.g. first normal-
ize, then resolve the irreducible components; the proper map r is the evident
compositum. Since r is proper, we have the pull-back maps:

9) r*: HU)—— H(T), ri: Hi(U) —— H\(T) .

Notation. In the remainder of this section: K = C; we keep the stratifica-
tion %, and we assume, in addition that U,V are quasi-projective varieties
with U nonsingular of some dimension d; by cohomology we mean Betti
cohomology with rational coefficients and we drop the Betti decoration;
for j € Z, deﬁne the complementary degree j':=2d — j and denote by
Sy HI(U) XH] (U)—Q the Poincaré duality pairing; finally, set Gry, =

GryyH (U), Gr'¢>b =GrypH} (U) and similarly for Grd)b;n, Gr,d)bm

The supports U of ¢ are among the closures T of the strata. Note that
what follows applies to all the strata 7', not just to the ones appearing as
supports in a given perversity. This is simply because, in that case, the
corresponding terms are automatically zero (see [10]).

Recalling our conventions on the perverse filtration, the pull-back map in
cohomology m* : H(U) — H(T) is compatible with the perverse filtrations,
provided we shift the one for v by the fixed amount d — dim 7. We set,
accordingly, b’ :=b+d —dim7. Similarly, for the pull-back map r{ for
compact supports.

The map r* (7], resp.) thus descend to a map 7} : Gryp — Gryp (r;‘jb,
resp.) on the graded pieces, compatibly with the decomposition by supports,
ie. rf =)y Th (ry b= => 9 g resp.). Note that the supports for the
maps ¢ and ~y may be quite different, but this does not spoil the picture.

Denote by r Gr¢ b — G?“W b T the compositum of the map r; followed
by the prOJectlon onto the (possibly trivial) T-th direct summand of G-
Similarly, we have the map r, VT cGrgy — Gr!mb,j.

The duality pairing descends to a non-degenerate pairing on the graded
pieces:

(10) fUGT : Gré')yb X Gr!j’;j;’fb HQ) (aaﬁ) - Uqr(av B) )

and the Grd) by and Gr. 6—b are mutually orthogonal when U # DI
We can now state the desired characterization [7, 10] of the summand
corresponding to the dense stratum V:
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GT‘¢7b7V = n Ker ’I”ZS - G""d),by
S#Ve

G’I“!’(#b’v = ﬂ Ker T'*b§ - Gry’d,’b,
S#Ve

(11)

while, for the non-dense strata, the orthogonality property discussed above
gives:

(12) Groor=| [ Kerrjg ﬂ(Gr,@,b,‘,)Hﬁr
SAT, Ve

The formula for G, b T 1S analogous.

1.3.4. HL-triples and splitting. Proposition 1.3.4 below is one of the
keys to the cohomological approach in this paper: it singles out the preferred
splitting in cohomology we work with; see (20) and Proposition 2.2.1. It
should be compared with [16], Proposition 2.4, which is stated and proved
at the level of triangulated categories with t-structures. By taking cohomol-
ogy, the latter implies the former, in the Betti and étale contexts. On the
other hand, Proposition 1.3.4 becomes useful in contexts where it is not
immediately clear how to use triangulated categories (e.g. the cup product
operation in the derived category of D-modules, in de Rham case), or where
such formalism is absent (e.g., to our knowledge, crystalline cohomology).

Let A be an Abelian category endowed with an additive and exact autoe-
quivalence A — A(1), whose iterates are denoted by (m), and let AF be
the associated category of objects endowed with a finite increasing filtra-
tion. Given (H, F) € AF, we denote by Gr;H := Grl'H, and by (Gr.H, F)
the associated filtered graded object, i.e. GryH := ®;Gr;H with the “direct
sum” filtration F;Gr.H = ©4<;Gr,H. Let (H, F,e) be a triple with (H, F)
in AF and e: H — H(1) subject to e : F;H — F;;2H(1). Assume that the
triple (H, F,e) is an HL-triple, i.e. that the induced maps €' : Gr_;H —
GriH (i) are isomorphisms (hard Lefschetz property). We have the usual
primitive Lefschetz decomposition Gr.H = @o<j<iP<;(—j), where P¢, :=
Kere't! C Gr_;H.

Proposition 1.3.4. ([8/, Lemma 2.4.1) Let (H,F,e) and (Gr.H,F) be
as above. There is a unique map f; : P¢, — F_;H with the following two
properties:
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1) fi induces the natural inclusion P¢; — Gr_;H
2) e*o fi: P¢, — GrgH(s) is zero Vs > 1.

The map ¢e 1= o<j<i elof; . (GroH,F)— (H, F) is an isomorphism in AF .
1.4. The decomposition theorem and Betti cohomology

Let (f,g,m) be as in (1), except that we work over C and with rational
Betti cohomology. Recall the notation in §1.1, especially the one for the
graded pieces of the perverse filtration, and the one in §1.3.4 for HL-triples.
The analogous statements and constructions for compact supports are left
implicit; e.g. write Grp  in (13) and m g(f,n,b) in (16).

1.4.1. Decompositions associated with a projective map. If we set
Q := ICx, then we have the finite direct sum decomposition by supports:

IHB(X)%@ EB GrB.fb9)-

b PeS(£.0,Q)

The perverse Leray filtration &g ; induced by f on IHg(X) is given by
mixed Hodge substructures for the natural mixed Hodge structure on IHp(X)
constructed in [7], i.e. it is compatible with #  and, after passing to C-
coefficients, with .Z.

The relative Hard Lefschetz theorem implies that we have direct sum iso-
morphisms an :®yGrpf by = ©yGrp s (b) of mixed Hodge structures.
In particular, we deduce that the triple (IHp(X), #p ¢,n5) is an HL-triple
(§1.3.4) for the category of mixed Hodge structures. We obtain the following
four decompositions of mixed Hodge structures:

(13) GTBf —@GTbe—@GT‘beg)— @Pn_i ]
0<5<e
= @ @ PZ,_@(—J'),

b Y,—i+2j=b

where P . o (—j) = Grp fp.9 N P _.(—j). We apply Proposition 1.3.4 and

—,2)
obtain the splitting of mixed Hodge structures of the perverse filtration

e@B,f

(14) byy © Grpp — IHp(X),

no matter which of the four decompositions (13) of Grp s we plug in the
Lh.s.
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1.4.2. The projectors associated with a projective map. We have
the four direct sum decompositions stemming from (13) and (14):

(15)  IHB(X) =P by, (Grapp) = P bns (Groppm) =+ -
b b2

Any direct summand of any direct sum decomposition above gives rise to
the degree-preserving endomorphism of IH (X ) obtained by projecting onto
that summand. We thus obtain the Betti projectors of the decomposition
theorem for (f,n):

(16) WB(f7777b)a7rB(f7n7 bv@)va(fﬂ?vivj)aWB(fanﬂ;ajaQ.J)
€ (N F°) End°(IHp(X)),

where the inclusions in the appropriate steps of the filtrations (%, %) express
that these projectors are maps of rational mixed Hodge structures.

1.4.3. Decompositions for the composition of two proper maps.
We drop the Betti decoration. The purpose of this section is to clarify, via
Lemma 1.4.1 below, the relation between the perverse filtrations arising from
the maps f, g, h.

Let @ be semisimple complex of geometric origin ([3]) on W. We have
the direct sum decompositions ¢.Q = @, (P @g.a,x) [—a] and, since h, =
fx0gs

(17) h.@Q = @ @ @Qg,a,%;ﬂb,@ [—d],

c a+b=c X,9

where it is understood that, for every fixed (a,b), we take, for each support
X € 8(9,a,Q), the supports 9 € S(f, b, Qg.a.x)-

We have the following perverse filtrations: &4, 2, on H(W, Q) and &
on Gryg = Gr?rH (X, Qf.q)- Clearly, &7, induces a filtration, still denoted
by P, on Gry,. Given X € S(g,a, @), consider the natural quotient map ¢ :
Pya — Grga = ©xGrgqx and define Py , x == q_lGT‘gya’x. Clearly, Gy q x
= Pgax/Pga-1. Define P, .oy and Py in a similar way.

The following lemma follows directly from the definitions and from (17).
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Lemma 1.4.1. We have the identity:
(18) PvGrga = PharvGrga-

For every X € 8(g,a,Q) and Q) € S(f,b,Qqg.a,x), we have the identity:

Pha+by N Pgax
L@h,aerfl N f@g,a,%-

(19) Grip9Grgax = Griaro9Grgax =

Remark 1.4.2. The relative hard Lefschetz theorem applied to Qg4 2
implies that the triple (Grgq,x, Zf,n) is an HL-triple (§1.3.4). We deduce
the four decompositions of each Gry Gryq x as in (13), as well as the split-
ting:

(20) Oy GryGrgax —= Grgax

as in (14). When @ = ICyy, everything is compatible with the mixed Hodge
structures in sight ([7]). We are going to use this set-up in the special case
when g is a resolution of the singularities of X integral, so that Gryo x =
[H(X, Q).

2. The projectors are absolute Hodge
2.1. The perverse filtration &7; is K-rational

Proposition 2.1.1. Let (f,0) be as in 1). There is a unique filtration 2
of H(X), which we name the perverse filtration associated with f, yielding
compatibility diagrams (x) for each subspace P H(X) and for each inclu-
sion PspyH(X) C Py H(X) withb < b'. At each Betti vertex, the filtration
coincides with the Betti perverse filtration Zp ;.

In particular, we can produce compatibility diagrams (x) for &Py and for
Gry == Gr?r on H(X) and on H\(X).

Proof. Given the nature of the arrows of diagram (3), unicity follows from
the requirement that, at the Betti vertices, the filtration coincides with the
Betti perverse filtrations.

As to the existence, we use the construction of §1.3.1. Since the formation
of the maps (7) is compatible with the arrows in (3), and strictly so for the
filtrations (#,.%), the filtrations F'® correspond to each other via the arrows
in (3). It follows that, for every 5 € B(K), we have compatibility diagrams
(%) for H(X). Similarly for F!ﬁ and H(X).
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Recalling that given a K-scheme Z, the set Z(K) of its K-rational points
is dense in every 0 Z(C), Fact 1.3.1 implies immediately that, for 5 € B(K)
generic, the filtrations of type Fg and F,B p appearing in every Betti ver-
tex of (3) for H(X) and H)(X) coincide with the corresponding perverse
filtrations Zp ;. O

2.2. X nonsingular: the supports and the maps (13), (14)
are K-rational

The goal of this section is to prove Proposition 2.2.1, stating that, when X
is nonsingular, the support and primitive decompositions (13), (14) fit in a
diagram (x).

Proposition 2.2.1. Let (f,n,0) be as in 1). Assume that X is nonsingular.
There are decompositions 13) and splittings 14) giving rise to corresponding
compatibility diagrams (x) in cohomology and in cohomology with compact
supports.

Proof. The proof proceeds by induction on m := dim X. We assume that
the proposition holds for every proper map g : Z — Z' of quasi-projective
varieties with Z nonsingular and dim Z < dim X. Note that if dim Z = 0,
then the inductive hypothesis is trivial and the conclusion of the proposition
is trivially true.

Let .93 be a stratification of Y as in Proposition 1.3.2, so that, for every
o, the supports of the C-map of are among the closures of the strata of
oy .

For every non-dense T' € 5, form the K-diagram (8) for the map f.
If necessary, we refine the stratification so that it satisfies the conclusion of
Proposition 1.3.2 for g as well.

Since dim T < dim X, we can apply the inductive hypothesis to g: we
have decompositions and splittings (13) and (14) for G4y, and Gry g4, giving
rise to compatibility diagrams (x). The fact that 7 may fail to be integral
does not effect the arguments in a substantial way.

Since r is a K-map, we have compatibility diagram (x) for the maps r*
and r" which, up to the shift of filtration discussed in §1.3.3, are compatible
with the respective perverse filtrations: this is the case at the Betti vertices,
and is thus automatic at all the other vertices.

By denoting, as in Section 1.3.3, by TZT 1 GrypH(X) — Gr, 7H(T)
the map of graded pieces induced by r*, followed by the projection onto the
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T-th direct summand of Gryy, we have compatibility diagram (x) for the
maps TZ,T' Similarly, for rl*’bj.

Since we have the compatibility diagram (x) for the Poincaré pairing
on X, the usual argument —validity of a given assertion at the Betti vertex
— coupled with Proposition 2.1.1, ensures that we have the compatibility
diagram (x) for the graded version (10) of the pairing.

We can therefore define the summands of the decomposition by sup-
ports of H(X) at every vertex of the compatibility diagram (x) by using
the equalities (12) and (11) in the three cohomology theories. The result-
ing decompositions by supports give rise to the compatibility diagrams (x)
automatically.

Since the primitive decompositions are defined via the linear algebra
properties of cupping with 7, the same is true for all four decompositions
in (13).

Finally, the compatibility diagram (x) for the splitting (14) is obtained
formally by applying Proposition 1.3.4 to each vertex of the diagram.  [J

2.3. K-rational intersection de Rham cohomology

Proposition 2.3.1. Let X be a quasi-projective K-scheme. We have a nat-
ural compatibility diagram (x) for IH(X) and for IH,(X).

Proof. We may assume that X is reduced. Let g : W — X be a “resolution”
of the singularities of X, i.e. W is nonsingular and each irreducible compo-
nent of W is a resolution of the singularities of an irreducible component
of X. We use the notation of §1.4.3. Note that ICx is the direct summand
Qg,0,x of g.ICy in perversity 0.

Let &, be the perverse filtration for g on H(W). We apply Proposi-
tion 2.2.1 to g and obtain the compatibility diagram (x) for G'rg o x. It only
remains to define the intersection de Rham cohomology groups of X as the
K -vector spaces:

(21) IHdR(X/K) = GT'g,(]’XHdR(W/K),
and similarly for IH) 4r(X/K). O

It is a routine matter to verify that these bifiltered groups (they are
endowed with the weight and the Hodge filtrations) are independent of the
resolution chosen to define them; see [10], Theorem 2.2.3.a. Here is a par-
tial list of useful properties enjoyed by these groups (verifications left to
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the reader; X integral for simplicity): non-degenerate intersection pairing in
intersection cohomology; map from cohomology to intersection cohomology;
map [H 4r(X/K) — IH4r(X/K); cup product with de Rham cohomology
Hip(X/K) @ IH)o(X/K) — IH} (X/K); cycle classes; restrictions and
Gysin maps for normal nonsingular inclusions ([10], p. 714]); restrictions
to Zariski open subvarieties.

2.4. X possibly singular: the maps (13) and (14) are K-rational

This section can be skipped if in Theorem 2.5.1 we assume that X is non-
singular.

Let things be as in (1). In the Betti context, if we set @ := ICyy, then
we have to the decompositions of GrtGrgq x H (W) and the splitting (20) of
Remark 1.4.2.

Proposition 2.4.1. Let things be as in 1) with W nonsingular. We have
compatibility diagrams (x) for the decompositions and splittings of Remark
1.4.2

Proof. Since W is nonsingular, Propositions 2.1.1 and 2.2.1 allow us to form
the compatibility diagrams (%) for the r.h.s. of the two equalities (18) and
(19) of Lemma 1.4.1. The conclusion follows. O

2.5. The projectors of the decomposition theorem
are absolute Hodge

Let things be as (1), with g a resolution of the singularities of W. We apply
Proposition 2.4.1 in the case of Gryg x, which gives us the compatibility
diagram (x) for IH(X) (Proposition 2.3.1). Proposition 2.4.1 applies and
we obtain compatibility diagrams (x) for the decompositions of type (13) of
Gr¢Grgox given in Remark 1.4.2, and for the splitting ¢, (20) in the same
remark. From now on, we write /H(X) and Gryo x interchangeably.

We define projectors 7(f,n,b) at each vertex of the compatibility dia-
gram (x) for End°(IH (X)) by taking the projection onto the summand
On(GrepGrgox) of IH(X) = Grgo x associated with ¢,. Form the com-
patibility diagram (x) associated with End®(/H (X)) and form the endomor-
phisms:

(22) x(f,n,b) € End’(IH(X)).
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The collection x(f,n,b), b € Z is a complete system of orthogonal projectors:

E(fu 7, b) Oﬂ(fﬂ?a b/) = 5bb’ E(fvna b)? Zl(fa 7, b) = EIH(X)
b

We can do the same for the remaining decompositions in (13) and obtain
projectors w(f,n,4,7), =(f,n,b,2) and w(f,n,1,7j,9). These projectors are
related in the following way: they refine each other in the same way the
decompositions (13) refine each other.

We have the analogue m, for compact supports.

Theorem 2.5.1. Let (f,n,K) be as in (1). The projectors (22) and their
compact supports analogue are absolute Hodge.

Proof. We have the compatibility diagram () for End°(IH(X)). Fix one
of the four kind of projectors in End°(IH (X)) and call it w. By the very
definition of 7 and by Proposition 2.4.1, we have that the 7’s at each vertex
correspond to each other via the arrows of the diagram. Since the projector
is defined in Q-Betti cohomology, we have that o*x is rational. Since the
projectors are (strictly) compatible with (%, %), we have that w4 € (#° N
#0) End®(IH (X)). The compact supports analogue is proved in the same
way. O

Remark 2.5.2. Let X i>X2 ﬁ . -Jian £> be proper maps of quasi-
projective K-schemes. Set g; := f; o--- o fi. We leave to the reader the task
to formulate and prove by induction on n that there is a natural n-tuple-
version of the first two decompositions (13), involving multi-supports of
the multi-graded pieces Gry" - - - Grgll IH(X); see §1.4.3 for a layout of the
case n = 2. There is the further variant, where at each stage one takes the
primitive decompositions associated with choices of f;-ample line bundles.
The reader can formulate and prove the n-tuple variant of Theorem 2.5.1
for this situation.

Remark 2.5.3. The paper [8] constructs five distinct distinguished iso-
morphisms of type (14), each yielding a collections of projectors as above.
Theorem 2.5.1 remains valid in each of these variants and the proofs are
similar. While the five collections of projectors are distinct, the resulting
five collections of absolute Hodge motives are mutually isomorphic.
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2.6. The projectors are André motivated for X
projective nonsingular

The content of this section is the result of discussions with F. Charles. We
place ourselves in the context of §1.2.1: M is the category of André motives
over the algebraically closed field of characteristic zero K. We aim at proving
Theorem 2.6.2. We need a preliminary lemma.

Lemma 2.6.1. Letr: X' — X be a map of nonsingular K -varieties with
X projective. There is a natural subobject k, C h(X) in My whose de Rham
realization is Kerr* C Hyp(X/K).

Proof. The methods of [14] endow de Rham (co)homology with the weight
and Hodge filtrations, and pull-backs and Gysin maps are filtered strict for
both. This can be seen by descending the situation from K to a suitable
subfield embeddable into C, by base changing to C, and then by using the
bifiltered strict comparison isomorphisms with the Betti theory, which enjoys
the desired properties. We are thus free to use the usual properties of weights
as in [14].
Choose a commutative diagram of quasi-projective K-schemes:

N

(23) lf
x-Jl.x-" ' p
X,

EN

where j is a smooth projective compactification with simple normal crossing
divisor D; v is a resolution of the singularities of D (e.g. the normalization);
the map r extends to a map 7 (compactify, resolve, put in normal crossing).

By using the de Rham analogue of Lefschetz duality, we get, for every
k > 0, the following commutative diagram (some decorations omitted; d’ :=
dim X”), where the horizontal line is exact (long exact sequence of relative
cohomology); the arrows are filtered strict for the Hodge and weight filtra-
tions.

Clearly, Kerr* = 7~} (Ker j*) = 71 (Im,).
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H"2(D)(~1) = Haq—(D)(~d))

Vs
Ly
. .

H*(X') \ HE(X) & Hay4(D)(~d)

CLAIM. We have Im i, = Im v, so that, obviously, Kerr* = F*_I(Im Ly).
Proof of the CLAIM. By mixed Hodge theory, the map v, is a surjection onto
the lowest-weight part #j Hs gim x—rD(— dim X'). The image of i, is of pure
weight & so that, by strictness, it comes from #} Hs gim x—k D (— dim X’) and
the CLAIM follows.

The category M is abelian, so that we can form the compositum:

h(r)

v h(X) h(X') h(X’)/Im h(1).
In view of the CLAIM, the kernel Kerv in M has de Rham realization
Ker r*.

Using standard techniques (take a common resolution of two choices),
one shows easily that Kerv is well-defined up to canonical isomorphism
independently of the choices made in the initial commutative diagram. [J

Theorem 2.6.2. Let (f,n,K) be as in 1) with K algebraically closed of
characteristic zero and with X nonsingular and projective. The projectors of
the decomposition theorem (§2.5) are motivated cycles in ASMX (X x X).
Proof. With Lemma 2.6.1 in hand, the proof of Theorem 2.6.2 is virtually
identical to the one of Theorem 2.5.1, which we now review briefly in the
context of Mg.

Lemma 2.6.1 and Proposition 2.1.1 give us motives whose de Rham
realization is the perverse filtration 2y Hyr(X). We denote these motives
by h(Z¢). Note the misleading potential of the notation: we are not applying
h to form this motive, but, rather, we are using Lemma 2.6.1 to define it. The
role of the lemma is precisely to circumvent the fact that in the geometric
description of the perverse filtration recalled in Proposition 2.1.1, one does
not immediately “promote” diagram (6) to the category My because we
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are not aware of a theory of André motives for nonsingular open varieties,
here the elements of the flag X in said diagram.

We now produce motives h(Gry), decompositions of h(Gry) as in (13),
the splitting (14) and, finally, motivated projectors = in End(h(X)) =

AdmM X (X % X) which map, via clgr, to our de Rham projectors of the
decomposition theorem in HZ8MX (X x X)(dim X). O

Remark 2.6.3. Given Theorem 2.6.2, one can define a canonical André
motive attached to the intersection cohomology groups of any projective
K-scheme X by choosing a resolution ¢g: W — X, and defining it as in
Equation (21), which makes sense in the category M. The verification
that this notion is independent of the resolution is standard, and so is the
verification of the formal properties stated in §2.3. The reader should have no
problems in applying the methods of this paper to prove that Theorem 2.5.1,
as well as its variants outlined in Remarks 2.5.2, 2.5.3, have an intersection
cohomology counterpart in Mg

Remark 2.6.4. As the referee has kindly pointed out, M. Saito’s theory
of mixed Hodge modules in an arithmetic context [23], allows to construct
absolute Hodge motives whose Betti realizations are the intersection coho-
mology groups.

Remark 2.6.5. In the paper [5], A. Corti and M. Hanamura show that,
if the standard conjectures hold, then it is possible to upgrade the decom-
position theorem to the level of motives and, in particular, to define Chow
motives whose Betti realizations are the intersection cohomology groups. In
[9] it is shown that the projectors on the summands corresponding to the
different supports of a semismall map, but not the projectors onto a given
cohomological degree, are given by algebraic cycles. The result is generalized
to generically finite maps of threefolds in [11]. Some new special cases could
arise from recent progress on the standard conjectures (e.g. [4]).

3. Variants of Theorem 2.5.1

3.1. The projectors are absolute Hodge over an algebraically
closed field of characteristic zero

Theorem 2.5.1 is stated for algebraically closed fields with finite transcen-
dence degree over the rationals. In [15] the notion of Absolute Hodge class,
or map, is first introduced for algebraically closed fields of characteristic zero
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with finite transcendence degree over the rationals; it is then extended to
arbitrary algebraically closed fields of characteristic zero by descending to
algebraically closed subfields of finite transcendence degree over the ratio-
nals; finally, it is extended to arbitrary fields of characteristic zero by passing
to an algebraic closure and by considering Galois invariants. It is thus clear
that a class, or map, defined over any algebraically closed field of character-
istic zero, is absolute Hodge iff it can be descended to an absolute Hodge
class, or map, over an algebraically closed subfield of finite transcendence
degree over the rationals. It is also clear that the constructions in §1.3 are
of this nature.

It follows that Theorem 2.5.1 holds over any algebraically closed field of
characteristic zero and that given a field of characteristic zero, it holds over
a suitable finite extension.

We have defined the groups IHgr(X/K) (21) assuming K algebraically
closed of finite type over Q. What above shows that one can do so over any
field of characteristic zero.

3.2. The projectors are Tate classes

Let Ky be a field of arbitrary characteristic, with a fixed algebraic closure
Ky C K. Let Xy be a Kyp-scheme and let X be the resulting K-scheme. For
every prime number ¢ # char K, the Qg-adic cohomology (with and without
compact supports) of X carries a continuous action of the profinite group
Gal(K/Kj).

We say that an element in some He (X, Qy)(m), or in End®(He: (X, Qy),
is of Tate type if it is Gal(K /Ky)-invariant. Similarly, for compact supports.

Let (f,n) be as in (1), except that we work over an arbitrary, i.e. not
necessarily algebraically closed field K. The methods of this paper show that
the projectors of the decomposition theorem, defined in #f End®(IHq (X ®5
K,Q)) as in (16), after passing to an algebraic closure K of K, are invariant
under the action of the group Gal(K /K1), where K] is a suitable finite exten-
sion of K. In particular, said projectors are Tate for the situation over K;.

According to the Tate conjecture, if K is finitely generated over it prime
field, and X is geometrically irreducible smooth and projective, then these
projectors are expected to be algebraic.

3.3. The projectors are absolutely Hodge and Tate
in the sense of Ogus

In this section, we adapt A. Ogus’ definitions [22] of absolutely Hodge and
absolutely Tate de Rham classes to the case of maps, and prove that the
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projectors in the decomposition theorem have this property. Since we work
with crystalline cohomology for varieties over a perfect field of positive char-
acteristic (see the survey [21]) and this theory is not well-behaved for either
singular, or non proper varieties, we place ourselves in the safer smooth and
proper niche. Alternatively, one may work with rigid cohomology.

Let K be a field of characteristic zero, let R C K be a smooth Z-algebra,
set R := Spec R and let X — R be a proper and smooth map. It is standard
that a proper smooth X/K-scheme can be descended to such an /R and
that the closed points of R have finite, hence perfect, residue fields. Let
¢ € R(C) be a C-point of R. Denote by X. the C-variety obtained by base
change. We have the natural maps:

(24) ¢* : Hyp(X/R) — Hyp(X./C) —= Hp(X,,C).

Let k be a perfect field of chark = p > 0. Let W = W (k) be the ring of Witt
vectors of k. Let 0 € R(W) be a W-point of R and let & € R(k) be the
resulting k-point, i.e. the compositum: R — W — k. We get the Cartesian
diagram:

R

Spec k —— Spec W —— Spec R,

with resulting maps (de Rham/crystalline comparison: K := the quotient

field of W):

(26) & : Hyp(X/R) —> Hyp(Xy/W) @ K — Hepi(Xs/W) @1 K.

The crystalline Frobenius is the automorphism of the rhs of (26) induced by
the action of absolute Frobenius on Xs.

Definition 3.3.1. Let X be smooth and proper over a field K of charac-
teristic zero. Let £ € End’(Hyr(X/K)). We say that ¢ is absolutely Hodge, if
there are X'/R as above inducing X/K, and g € End°(Hir(X/R)) induc-
ing &, such that, for every ¢ € R(C), c¢*{r is a Hodge class. We say that & is
absolutely Tate, if there are X /R and &g as above, such that, for every W
and every o € R(W), c*{g is invariant under crystalline Frobenius.

Theorem 3.3.2. Let (f,n) be as in (1), except that we assume that X, Y
are projective, X is smooth and K is a field of characteristic zero. After
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passing to a suitable finite extension of K, the projectors of the decomposition
theorem are defined and absolutely Hodge and Tate in the sense of Ogus.

Sketch of proof. The discussion in §3.1 implies that the projectors are defined
after passing to a suitable finite extension of K. We replace K with such
an extension. The same discussion in §3.1 shows that the projectors are in
fact defined over a suitable smooth Z-algebra R C K over which the whole
situation descends, with X'/R smooth and projective.

Ogus’ density argument [22], Remark 4.5 ensures that in order to prove
the “absolutely Hodge” part of the statement it is enough to verify it at a C-
point supported at the generic point of R. This, in turn, follows immediately
from our Theorem 2.5.1.

We turn to the “absolutely Tate” part of the statement.

As it is recalled in §3.1, the projectors in de Rham cohomology are
constructed via diagrams (6), (8) and the splitting ¢, (20). In view of the
functoriality properties of crystalline cohomology in the context of smooth
and proper varieties, the use of the second and third ingredient can be car-
ried out in crystalline cohomology, compatibly with the de Rham/crystalline
comparison isomorphism (26). On the other hand, the first one involves non-
proper varieties and is thus problematic on the crystalline side. This issue is
easily by-passed via the CLAIM in the proof of Lemma 2.6.1: one enlarges
R C K by adding finitely many elements so that diagram (23) descends to
it. If necessary, one inverts an element to ensure smoothness of X'/ R. We are
now free to form the filtration in Heyis(Xz/W) via the use of diagram (6)
base-changed to the perfect field k, compatibly with the comparison iso-
morphism (26). It follows that the formation of every object leading to
the definition of the projectors in crystalline cohomology is now crystalline
Frobenius-invariant. O
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